

Preferential Deactivation of the S_3 State of the Water-Oxidizing Complex, Favoured by Plastoquinone Reduction in Barley Chloroplasts

Fabrice Franck

Département de Botanique, Service de Photobiologie, Université de Liège, Sart-Tilman, Belgium

and

Georg H. Schmid

Lehrstuhl Zellphysiologie, Fakultät für Biologie, Universität Bielefeld, D-33501 Bielefeld, Bundesrepublik Deutschland

Z. Naturforsch. **48c**, 603–608 (1993); received May 14, 1993

Oxygen Evolution, Photosystem II, S-State, Plastoquinone, Charge Recombination

The flash patterns of oxygen evolution after pre-illumination by continuous light or by a flash sequence were compared in etiochloroplasts and mature chloroplasts of barley. In both types of plastids sub-saturating continuous illumination of some seconds strongly affected the S_3 but not the S_2 state of the oxygen-evolving complex. This result is ascribed to efficient charge recombination of S_3 with the acceptor side of photosystem II, favoured by partial reduction of the plastoquinone pool. The increase of S_3 observed in the presence of dichlorophenolindophenol in etiochloroplasts confirms this interpretation. These observations strengthen the recent hypothesis of a conformational change during the transition from S_2 to S_3 recently proposed to interpret the different susceptibility of these two states to hydroxylamine and hydrazine (F. Frank and G. H. Schmid, Biochim. Biophys. Acta **977**, 215–218 (1989); J. Messinger, U. Wacker, and G. Renger, Biochemistry **30**, 7852–7862 (1991)).

Introduction

Water oxidation by photosynthetic organisms involves the stepwise accumulation of four oxidizing equivalents at the donor side of photosystem II, followed by the oxidation of two water molecules and the release of molecular oxygen. It is widely accepted that the accumulation of positive charges takes place through oxidation of a cluster of manganese atoms close to the PS II reaction center, but the molecular mechanism of water oxidation in relation to manganese oxidation states is unknown [1, 2]. The reaction is formally described in terms of light induced transitions of successive oxidation states of a water-oxidizing complex or S_n states (the Mn cluster), where n is the number of positive charges [3, 4]. This mechanism can be experimentally investigated by measuring the oxygen produced by dark-adapted chloroplasts under short

light flashes, each of which generates a transition from S_n to S_{n+1} . Since S_1 is formed in darkness and is therefore predominant in dark-adapted chloroplasts [3], oxygen is released after the third flash. A maximum in the flash-induced oxygen production is then found every four flashes.

Reducants like NH_2OH or NH_2NH_2 have the general property to reduce the higher S_n states to S_0 and to a formal S_{-1} [5]. Using etiochloroplasts which have more stable S_3 than mature chloroplasts [6], we showed in a previous paper [7] that S_2 exhibits a peculiar sensitivity to NH_2OH when compared to S_2 and S_3 . This was confirmed by Messinger and Renger [8] and Messinger *et al.* [9] who extended this type of investigation to mature chloroplasts and found the same result using either NH_2OH or NH_2NH_2 . The higher susceptibility of S_2 , or the relative insensitivity of S_3 , towards these reductants could indicate that a structural change takes place during the transition from S_2 to S_3 [9].

In the absence of exogenous reductants, S_2 and S_3 are spontaneously reduced to S_2 and S_1 . This process, known as deactivation, involves the reduction of S_2 and S_3 by endogenous reductants in PS II. Thermoluminescence experiments have shown that S_2 and S_3 deactivate through charge recombination with reduced QB (the exchangeable

Abbreviations: DPIP, 2,6-dichlorophenol indophenol; Hepes, 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid; QA, QB, the primary and the secondary quinone acceptors of photosystem II.

Reprint requests to Prof. Dr. G. H. Schmid.

Verlag der Zeitschrift für Naturforschung,
D-72072 Tübingen
0939-5075/93/0700-0603 \$ 01.30/0

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung „Keine Bearbeitung“) beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

This work has been digitized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.

plastoquinone in the PS II reaction center) after flash illumination [10, 11]. The long lifetimes of S₂ and S₃ observed in isolated PS II particles supplied with an exogenous electron acceptor has confirmed the role of the PS II reducing side in deactivation processes [12]. The Tyr-160 electron donor of the D₂-peptide of PS II may also be involved in S₂ and S₃ reduction [13, 14] as well as another unidentified reductant [15].

Having in mind a plausible structural change during the S₂ → S₃ transition, we have investigated the effect of the reduction level of the plastoquinone pool on the deactivation of S₂ and S₃. For this purpose the modifications of the S_n population induced by continuous illumination with or without PS II electron acceptors were studied in etiochloroplasts and in mature barley.

Materials and Methods

Etiolated barley seedlings (*Hordeum vulgare* var. Avilon) were grown in darkness at 23 °C on vermiculite and tap water during 6 days. They were then illuminated by white light (800 lux) during 3 h. Plastid isolation was performed according to [6], but without serum-albumine in the medium. For isolation of chloroplasts from mature leaves, the same method was applied to barley grown in a greenhouse during 14 days.

Oxygen measurements were performed by polarography using the three-electrode system described by Schmid and Thibault [16]. The assay suspension contained undisrupted plastids in 25×10^{-3} M Hepes buffer (pH 7.5) with 0.4 M sucrose, 5×10^{-3} M MgCl₂ and 15×10^{-2} M KCl. The total chlorophyll content of the sample (total volume 0.35 ml) was approx. 40 µg with etiochloroplasts and 60 µg with mature chloroplasts. Flash sequences at 3.3 Hz frequency were used. Calculations of oxygen production at flash N (Y_N) were made with a home-made computer program. Continuous white light ($165 \mu E \times m^{-2} \times s^{-1}$) was provided by a projector. Red light ($30 \mu E \times m^{-2} \times s^{-1}$) was obtained using a cut-off red filter transmitting light above 640 nm.

Results

Etiochloroplasts isolated from etiolated leaves after a 3 h greening period showed the well-known oscillation of flash-induced oxygen evolution with

a maximum under the third flash in the dark-adapted state (Fig. 1 A, sequence 1). In these experiments, Y_N stands for the normalized oxygen production at flash N.

At this early stage of chloroplast development, the lifetime of S₃ was longer than in mature chloroplast [6]. This resulted in high oxygen yields under the first flash (Y₁) when short dark-adaptation times were used. The flash pattern obtained 30 s after a pre-illumination sequence of 15 flashes is shown in Fig. 1 A, sequence 2. It showed only weak variations from one flash to another. In that case an almost equipartition of the S-states was observed. This is in sharp contrast with the situation encountered 30 s after a 10 s continuous illumination by red light. When a sequence was recorded after this pre-treatment, the Y_N oscillations were partly recovered (Fig. 1 B, sequence 1). Y₁ was much lower 30 s after 10 s of continuous red light than 30 s after a flash sequence. A much smaller decrease of Y₂ was found. This result points to a particular effect of continuous light, when compared to flashes, on the deactivation rates of the higher S-states, especially S₃. The concomitant increase of the oxygen yield under the

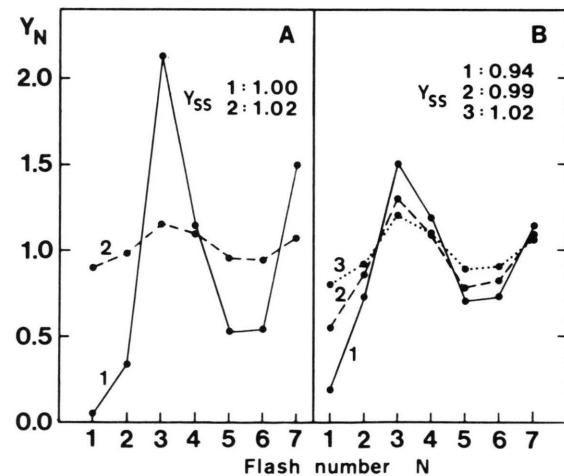


Fig. 1. Y_N sequences of etiochloroplasts in the dark-adapted state (A, 1), 30 s after 10 s continuous red light (B, 1) and in subsequent flash sequences given every 30 s (B, 2 and B, 3). The intensity of the continuous red light was $30 \mu E \times m^{-2} \times s^{-1}$. The Y_N values have been normalized on the steady-state oxygen evolution (Y_{ss}) measured as the average Y_N at flashes 12 to 15. Actual Y_{ss} values are indicated with Y_{ss} arbitrarily set to 1.00 for the dark-adapted sample.

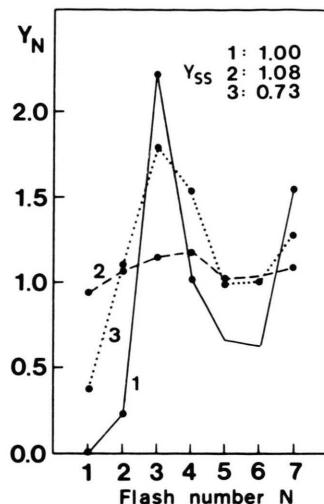


Fig. 2. Y_N sequences of mature chloroplasts in the dark-adapted state (1), 10 s after a first 15 flash sequence (2) and 10 s after 3 s of continuous red light (3).

third flash (Y_3) shows that S_3 deactivates to S_1 under these circumstances.

If successive trains of flashes were given 30 s after the 10 s pre-illumination by continuous light, the Y_N were progressively modified to approach the control sequences recorded 30 s after a first flash sequence in a dark-adapted sample. This is seen by comparing sequences 1 to 3 of Fig. 1 B, where it is again evident that the main effect lies on S_3 , as shown by the progressive restoration of Y_1 .

Results similar to those described above were obtained when using chloroplasts of mature green leaves instead of etiochloroplasts. In that case however, a shorter dark period was used since the deactivation of S_3 after flashes is more rapid than in etiochloroplasts. An example is shown in Fig. 2, with continuous red light pre-illumination of 3 s and a dark period of 10 s. Again, when compared to flashes, continuous light induced a marked decrease of Y_1 (S_3), together with an increase of Y_3 (S_1). The progressive reversal of this effect upon further flash sequences was also found (not shown).

Since illumination of isolated plastids by continuous light should lead to a more rapid reduction of the plastoquinone pool than flash illumination, we attributed the rapid deactivation of S_3 to a charge recombination between S_3 and QB^{2-} , favoured by the larger extent of reduction of the plastoquinone

pool. In order to verify this hypothesis, we used various PS II electron acceptors and attempted to measure their effect on oxygen flash sequences in pre-illuminated chloroplasts or etiochloroplasts. Using chloroplasts we found that FeCN, *p*-benzoquinone and DPIP, even at low concentrations, induced an oxygen uptake under the flashes which were superimposed on oxygen evolution, and made Y_N calculations difficult [6]. In etiochloroplasts however, low concentrations of DPIP (15 to 25×10^{-6} M) induced only a weak oxygen uptake when the same red light pre-illumination as above was used.

Fig. 3 A shows the effect of 25×10^{-6} M DPIP, added to dark-adapted etiochloroplasts, on the oxygen flash pattern measured 20 s after a 10 s pulse of continuous red light. A significant ($\sim 40\%$) enhancement effect on Y_1 was observed, whereas Y_2 was practically unchanged. The increase of Y_1 had its counterpart in a decrease of Y_3 and, to a lesser extent, of Y_4 . This effect of DPIP confirms that the accelerated deactivation of S_3 upon continuous illumination is due to a preferential charge recombination of this state with the reducing side of PS II. Taking into account 10% of misses under flashes (which gave good fits with experimental sequences) we calculated the initial S_n distributions corresponding to the sequences of Fig. 3 A. The

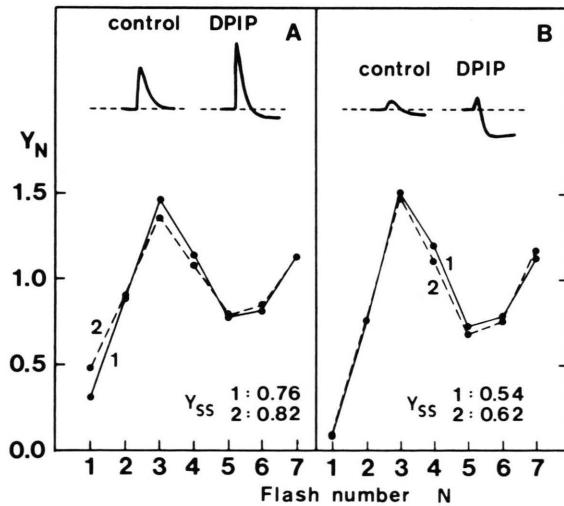


Fig. 3. Y_N sequence of etiochloroplasts measured 20 s after 10 s red (A) or white (B) light of 30 and $165 \mu E \times m^{-2} \times s^{-1}$ respectively, without (1) or with (2) 25×10^{-6} M DPIP. The first flash signals are shown in the upper part of the figure.

difference between the two calculated distributions (DPIP minus control) is shown in Fig. 4. The increase of S₁ at the expense of S₃ induced by DPIP reflects the effect of the electron acceptor on the deactivation of S₃.

In order to evaluate the extent of saturation achieved during red light pre-illumination, we recorded the oxygen evolution under a series of 15 flashes given during the pre-illumination itself. The amplitude of flash-induced oxygen production under such circumstances reflects the amount of S₃ with oxidized QA. Under the red light used in the above experiments, an almost constant production was found at each flash (Fig. 5, trace A). It represented 30% of the steady-adapted sample. Almost complete saturation could be achieved by removing the red filter between sample and light source, as shown by the practically undetectable flash-induced oxygen production under white light in Fig. 5, trace B. When a flash sequence was recorded 30 s after a 10 s pre-illumination by saturating white light, very low levels of S₃ were found even in the presence of 25×10^{-6} M DPIP (Fig. 3B). It must be noted however, that saturating white light enhanced the oxygen uptake under the first flash with DPIP (see first flash recordings in Fig. 3B). This uptake evidently caused an underestimation of Y₁.

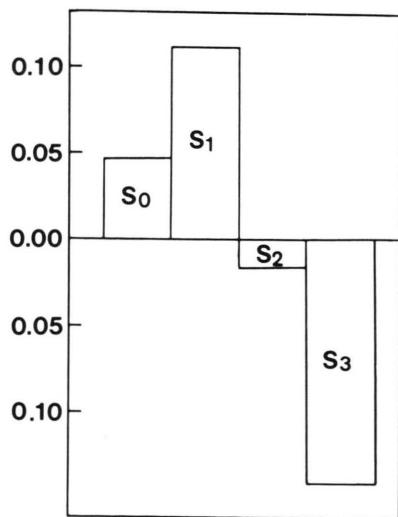


Fig. 4. Calculated difference in the S-state distribution 20 s after a 10 s red light pre-illumination with or without 25×10^{-6} M DPIP (DPIP minus control).

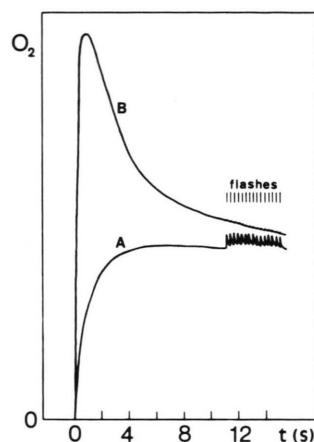


Fig. 5. Polarographic recordings of oxygen evolution during illumination of etiochloroplasts by red (A) or white (B) light of 30 and $165 \mu\text{E} \times \text{m}^{-2} \times \text{s}^{-1}$ respectively. A sequence of 15 flashes was given at time 10 s.

The effect of continuous illumination on the deactivation of S₃ in etiochloroplasts was confirmed by comparing deactivation kinetics after a flash sequence and after 10 s red light pre-illumination (Fig. 6). The acceleration of the deactivation of S₃ after continuous illumination is evident.

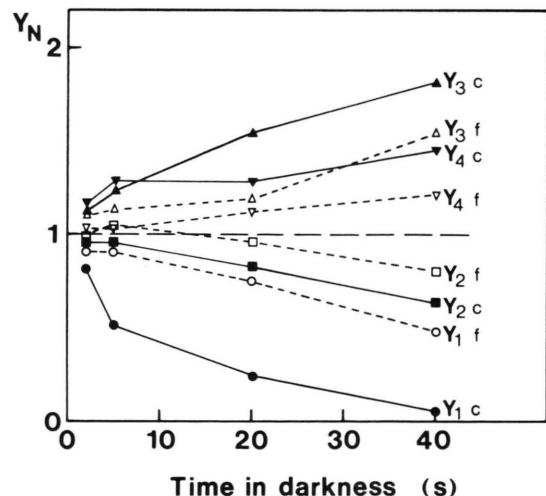


Fig. 6. Deactivation of the S-states in etiochloroplasts measured as the Y_N oxygen flash yields (N = flash number) in a flash sequence given at increasing time in darkness after pre-illumination by 10 s continuous red light (closed symbols, c) or by a sequence of 25 flashes (open symbols, f) after dark-adaptation. Y_N values were normalized on the steady-state flash yield (= 1).

Correspondingly, faster formations of S₁ (Y₃) and, especially at short times after illumination, of S₀ (Y₄) are found.

Discussion

In whole plastids, illumination by a small number of saturating flashes leads only to limited reduction of the plastoquinone pool as shown by the high steady-state oxygen evolution under flashes. The oxidation of plastoquinol competes effectively with single electron reactions at each flash. However, a high extent of plastoquinone reduction can be achieved within a few s under continuous illumination of sufficient intensity if no electron acceptor is added [17]. Under this condition the cycling of the S_n states is progressively impaired by the lack of reducible acceptors in PS II and charge recombination with reduced acceptors (QA and QB) is favoured. The probability to reach the higher S_n during illumination therefore decreases, especially when approaching saturation.

Our main observation is that the deactivation of S₃ is greatly accelerated by pre-illumination in continuous light whereas S₂ is only weakly affected. This is demonstrated by the much lower Y₁ signal obtained after continuous pre-illumination when compared to that after a series of flashes both in etiochloroplasts and in mature chloroplasts, and by the relative stability of Y₂ under the same conditions. That this effect is due to the reduction of the plastoquinone pool is demonstrated, at least in the case of etiochloroplasts, by its sensitivity to DPIP which partly restores Y₁ but does not modify Y₂. The decrease of S₃ after continuous pre-illumination can be therefore interpreted as a result of its recombination with reduced electron acceptors of the PS II reaction center (namely reduced QA and/or QB). The complementary behaviour of S₁ observed in all cases directly suggests recombination of the charge pair S₃/QB²⁻.

The observed relative stability of S₂ suggests a relative insensitivity to the reduction status of the plastoquinone pool. This is in apparent contradiction to an earlier report by Sundblad *et al.* [18] who observed that in protoplasts both S₂ and S₃ rapidly deactivate after saturating white light pre-illumination unless it is followed by far-red light illumination. Most probably this discrepancy is due to the much higher intensity and the longer

duration of the pre-illumination used by these authors. An extensive study of S₂ and S₃ deactivation as a function of pre-illumination intensity and duration is certainly needed in order to appreciate in more detail the behaviour of these two states in response to various extents of reduction of the plastoquinone pool. The deactivation pattern obtained after partial reduction of the plastoquinone pool in this study does not support a trivial explanation of the relative constancy of S₂ after continuous pre-illumination due to deactivation of S₃ to S₁ via S₂, since the deactivation of S₂ is only weakly affected over the entire period covering S₃ deactivation.

Our results show in any case a striking difference in the stability of S₂ and S₃ under pre-illumination conditions which induce partial or almost complete reduction of the plastoquinone pool (as shown by measurement of the additional flash-induced oxygen production during pre-illumination). The stability of S₂ found here after pre-illumination of moderate intensity is in agreement with earlier observations of the prevalence of S₂ during prolonged illumination by short flashes [15] or by sub-saturating continuous light [19] and also with the independence of S₂ deactivation towards the states I or II of the excitation energy distribution between the two photosystems in *Chlorella* [20]. An accumulation of S₂ during continuous illumination would also be favoured by an especially low probability of the S₂→S₃ transition such as suggested by Delrieu [21].

Considering the recent finding [7–9] of a much greater susceptibility of S₂ to exogenous redox-active compounds when compared to S₃, the inverse order of susceptibility to endogenous reductants (probably QB²⁻) found here suggests that if a conformational change takes place during the transition from S₂ to S₃ it modifies in an opposite way the probability of reduction of the S_n by exogenous or endogenous reductants.

Considering the pronounced influence of plastoquinone on S₃ deactivation shown here, the gradual shortening of the S₃ lifetime in the course of greening [6] may be explained by a progressive decrease in the plastoquinone/chlorophyll ratio. Such a decrease most probably occurs during the first hours of greening since plastoquinone already exists in dark-grown plastids and slowly increases with illumination [22] whereas Chl is initially ab-

sent and rapidly accumulates during the first hours of greening.

Acknowledgements

F.F. is a research associate from the Belgian National Fund of Scientific Research and thanks

this institution for its financial support. We thank Rolph Schulder for his valuable help in computer analysis of polarographic signals.

- [1] G. Renger, *Photosynthetica* **21**, 203 (1987).
- [2] G. W. Brudvig, W. F. Beck, and J. C. de Paula, *Annu. Rev. Biophys. Chem.* **18**, 25 (1989).
- [3] B. Kok, B. Forbush, and M. McGloin, *Photochem. Photobiol.* **11**, 457 (1970).
- [4] B. Forbush, B. Kok, and M. McGloin, *Photochem. Photobiol.* **14**, 307 (1971).
- [5] B. Bouges, *Biochim. Biophys. Acta* **234**, 103 (1971).
- [6] F. Franck and G. H. Schmid, *Z. Naturforsch.* **39c**, 1091 (1984).
- [7] F. Franck and G. H. Schmid, *Biochim. Biophys. Acta* **977**, 215 (1989).
- [8] J. Messinger and G. Renger, *FEBS Lett.* **277**, 141 (1990).
- [9] J. Messinger, U. Wacker, and G. Renger, *Biochemistry* **30**, 7852 (1991).
- [10] S. Demeter, M. Droppa, I. Vass, and G. Horvath, *Photobiochem. Photobiophys.* **4**, 163 (1982).
- [11] A. W. Rutherford, A. R. Crofts, and Y. Inoue, *Biochim. Biophys. Acta* **682**, 457 (1982).
- [12] S. Styring and A. W. Rutherford, *Biochim. Biophys. Acta* **933**, 378 (1988).
- [13] W. Vermaas, G. Renger, and G. Dohnt, *Biochim. Biophys. Acta* **764**, 194 (1984).
- [14] R. I. Debus, B. A. Bavry, G. T. Babcock, and L. McIntosh, *Proc. Natl. Acad. Sci. U.S.A.* **85**, 427 (1988).
- [15] J. Lavorel and B. Maison-Peteri, *Physiol. Vég.* **21**, 509 (1983).
- [16] G. H. Schmid and P. Thibault, *Z. Naturforsch.* **34c**, 414 (1979).
- [17] P. Joliot, J. Lavergne, and D. Béal, *Biochim. Biophys. Acta* **1101**, 13 (1992).
- [18] L. G. Sundblad, W. P. Schröder, and H. E. Akerlund, *Biochim. Biophys. Acta* **973**, 47 (1988).
- [19] P. Petrov, C. Kochev, and L. Dounchev, *Photosynthetica* **24**, 593 (1990).
- [20] C. Lemasson and G. Barbieri, *Biochim. Biophys. Acta* **245**, 386 (1971).
- [21] M. J. Delrieu, *Z. Naturforsch.* **38c**, 247 (1983).
- [22] H. K. Lichtenhaller and K. Becker, *Z. Pflanzenphysiol.* **75**, 296 (1975).